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Summary 

Glia and microglia in particular elaborate pro-inflammatory molecules which play key roles 

in CNS disorders from neuropathic pain and epilepsy to neurodegenerative diseases. 

Microglia respond also to pro-inflammatory signals released from other non-neuronal cells, 

mainly those of immune origin such as mast cells. The latter are found in most tissues, are 

CNS resident, and traverse the blood-spinal cord and blood-brain barriers when barrier 

compromise results from CNS pathology. Growing evidence of mast cell - glia 

communication opens new perspectives for development of therapies targeting 

neuroinflammation by differentially modulating activation of non-neuronal cells normally 

controlling neuronal sensitization – both peripherally and centrally. Mast cells and glia 

possess endogenous homeostatic mechanisms/molecules that can be up-regulated as a result 

of tissue damage or stimulation of inflammatory responses. Such molecules include the N-

acylethanolamine family. One such member, N-palmitoylethanolamine is proposed to have a 

key role in maintenance of cellular homeostasis in the face of external stressors provoking, 

for example, inflammation. N-palmitoylethanolamine has proven efficacious in mast-cell 

mediated experimental models of acute and neurogenic inflammation. This review will 

provide an overview of recent progress relating to the pathobiology of neuroinflammation, 

the role of microglia, neuro-immune interactions involving mast cells and the possibility that 

mast cell–microglia cross talk contributes to the exacerbation of acute symptoms of chronic 
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neurodegenerative disease and accelerate disease progression, as well as promote pain 

transmission pathways. We will conclude by considering the therapeutic potential of treating 

systemic inflammation or blockade of signalling pathways from the periphery to the brain in 

such settings. 

 

Introduction 

Inflammation is fundamentally a protective cellular response aimed at removing injurious 

stimuli and initiating the healing process. However, when prolonged, inflammation overrides 

the bounds of physiological control and eventually becomes destructive. Inflammation 

increasingly surfaces as a key element in the pathobiology of chronic pain, neurodegenerative 

diseases, stroke, spinal cord injury, and perhaps even neuropsychiatric disorders.1-5 A 

plethora of pro-inflammatory cytokines, eicosanoids, and other immune neurotoxins, have 

been found in cerebrospinal fluid and/or affected brain regions of patients with 

neurodegenerative disorders.6 Consider also that nuclear factor-κB, a requisite transcription 

factor for most pro-inflammatory molecules, is activated in the substantia nigra pars 

compacta of Parkinson disease patients and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

(MPTP)-intoxicated mice and monkeys, and its selective inhibition of NF-κB protects 

dopaminergic neurones from MPTP toxicity.7  It is intriguing to note that neuroinflammation 

may also raise the brain’s sensitivity to stress.8 Indeed, a recently published study by Zhang 

et al.9 reports that inflammation-activated signalling pathways in the brain’s hypothalamus 

control the production of ageing related hormones. This finding provides a link between 

inflammation, stress responses and ageing. Inflammation thus constitutes an important target 

for neuronal protection in neurodegenerative disorders and neuropathic pain, the latter 

resulting from damage or disease affecting the somatosensory system.10 
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Recognition that an extensive communication exists between the immune system and the 

central nervous system (CNS) is, no doubt, one of the more fundamental advances in 

neuroscience in recent times. Inflammatory cytokines occupy a key niche in this network, 

regulating host responses to infection, inflammation, stress, and trauma. Glial cell activation 

has been implicated in the pathogenesis of Alzheimer disease (AD), Parkinson disease, 

cerebral ischemia, multiple sclerosis (MS)2,7,11 and motor neurone disease,12 and possibly 

schizophrenia and depression.4,13 Microglia-mediated neuroinflammatory processes are 

proposed to compromise healthy brain aging, as well.14 Found to accumulate at sites of injury 

or plaques in neurodegenerative CNS diseases,11,15 microglia scavenge dead cells and secrete 

neurone survival factors; the latter may have beneficial effects in the recovery of injured 

CNS. However, inappropriate and prolonged activation of glia can cause autoimmune 

responses leading to brain injury and neuronal cell death.2,11,15  Glia provide a link also 

between neuroinflammation and neuropathic pain;16 microglia, in particular, show increased 

activity in multiple pain processing pathways in response to peripheral injury.17 Systemic 

inflammation gives rise to signals that communicate with the brain and leads to changes in 

metabolism and behaviour - including the expression of a pro-inflammatory phenotype by 

microglia.18 It has been proposed that in multiple chronic disease states, and in ageing, 

microglia are primed by prior pathology, or by genetic predisposition, to respond more 

vigorously to subsequent inflammatory stimulation, thus transforming an adaptive CNS 

inflammatory response to systemic inflammation, into one with deleterious consequences.19 It 

thus goes without saying that delineating the signalling pathways underlying glial cell 

activation is crucial in the design of agents capable of antagonising such signalling steps – 

which may translate into therapeutic benefit for neurodegenerative disorders and neuropathic 

pain. 
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While it is widely accepted that glial cell activation contributes to neuropathology, one 

must not forget that microglia and astrocytes also respond to pro-inflammatory signals 

released from other cells of immune origin. In this view, mast cells represent a potentially 

important (and underappreciated) peripheral immune signalling link to the brain in an 

inflammatory setting. Mast cells share similarities with basophil granulocytes in blood, 

although the former are likely generated by different precursor cells in the bone marrow.20 In 

contrast to basophils, mast cells circulate in an immature form until choosing a tissue site to 

settle - which probably determines their precise characteristics. These effector cells of the 

innate immune system are present in most tissues in the vicinity of blood vessels, particularly 

near surfaces exposed to the environment.21 Mast cells participate in innate host defence 

reactions, occur in peripheral tissues innervated by small calibre sensory nerve fibres and 

within the endoneurial compartment of peripheral nerves, and in meninges and cerebral blood 

vessels. During development they enter the brain by way of penetrating blood vessels, with 

which they remain associated.22 Mast cells can move through normal brain blood-brain 

barrier (BBB),23 but may also traverse the blood-spinal cord barrier and BBB when 

compromised by disease. Interestingly, they are capable of phagocytosis and antigen 

presentation, and can modulate the adaptive immune response. 

 

Mast cells produce a vast array of mediators, which include biogenic amines, cytokines, 

enzymes, lipid metabolites, ATP, neuropeptides, growth factors and nitric oxide (Table 1).24 

Because of their heterogeneity, however, no single mast cell makes all of these. By nature of 

their immune regulatory role they participate in IgE switching by B cells,25 and the release of 

chemoattractants that recruit eosinophils26 and monocytes.27 Certain disease states, like those 

involving autoimmune demyelination are accompanied by an increased absolute number of 

mast cells within the CNS,37 as well as those undergoing degranulation.28 Mast cell trypase is 
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elevated in the cerebrospinal fluid of MS patients.29 At the other end of the equation, 

activated mast cells can provoke demyelination30 and induce apoptotic oligodendrocyte cell 

death.31 Brain mast cells might even 'bridge' the immune system and anxiety-like behaviour.32 

Theoharides and colleagues33 have suggested that perinatal mast cell activation by infectious, 

stress-related, environmental or allergic triggers can lead to release of pro-inflammatory and 

neurotoxic molecules, thus contributing to brain inflammation and autism spectrum disorders 

pathogenesis, at least in a subgroup of these patients. 

 

Microglia, mast cells and nervous system disease 

Neuropathic pain 

Persistent pain represents a substantial and growing unmet medical need, affecting nearly 

half of people seeking medical care in the US alone. Among all types of chronic pain, 

neuropathic pain stands out: this is pain resulting from damage, degeneration or dysfunction 

of the sensory nervous system, and remains largely untreatable. Central neuropathic pain is 

found in spinal cord injury, MS, and some strokes, while the common causes of painful 

peripheral neuropathies are diabetes and other metabolic conditions. Neuropathic pain is 

common in cancer as a direct result of cancer on peripheral nerves or as a side effect of 

chemotherapy. The triggering and maintenance of neuropathic pain states depends very much 

on Schwann cells, spinal microglia and astrocytes, together with elements of the peripheral 

immune system.34 Release of interleukin-1β (IL-1β) from spinal microglia as a consequence 

of inflammation/injury IL-1β may, by engaging its receptor induce phosphorylation of the N-

methyl-D-aspartate receptor NR1 subunit to strengthen painful signal transmission.35 Under 

pathological conditions dorsal horn microglia become activated and show up-regulated 

expression of purinergic receptors,36,37 whose inhibition or deletion strongly attenuates 

neuropathic pain.36-38 
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Upon degranulation, mast cells release algogenic (from the Greek 'algos' for pain) 

substances which activate or sensitise nociceptors, thereby contributing directly to 

neuropathic pain.39 Nerve-resident peripheral nerve mast cells represent the first line of 

activation at the point of damage and facilitate recruitment of neutrophils and macrophages.40 

Mast cell degranulation activates trigemino-cervical and lumbosacral pain pathways and 

elicits widespread tactile pain hypersensitivity,41 possibly mediated by a sensitising effect of 

histamine on nociceptors.56 Rapid release of  nerve growth factor (NGF) from mast cells also 

produces sensitization of nociceptors via the latter’s high-affinity NGF-trkA receptors (and 

indirectly via other peripheral cell types).42 Interestingly, mast cells themselves respond to 

NGF, in a paracrine/autocrine fashion.43 These events promote the recruitment of T-cells, 

which reinforce and maintain inflammatory reactions. The released mediators/factors can 

induce activity in axons and/or undergo retrograde transport to the cell body of dorsal root 

ganglion neurones, thereby affecting gene expression. Further, mast cells may enhance 

recruitment of other key immune cell types which, in turn, release pro-nociceptive mediators, 

such as IL-6.44 Systemic glucocorticoid therapy reduces pain and the number of tumour 

necrosis factor-α (TNF-α)-positive mast cells in rats with chronic constrictive injury, 

strengthening a role for mast cells in chronic pain states.45 Mast cells are important mediators 

of chronic visceral pain,46 as well. 

 

Ischemia and traumatic brain injury 

Stroke and traumatic brain injury are characterized by an inflammatory response in which 

microglia activation and macrophage/neutrophil infiltration are important elements.47 Left 

unchecked, this can ultimately lead to secondary injury. Yet, in certain instances attenuation 

of microglial activation can be beneficial.48 Considerable efforts have been directed also to 

inhibiting the consequences of blood-borne neutrophil and phagocyte infiltration in ischemia. 
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In contrast, less emphasis has been placed on brain-resident cell types able to mount an 

immediate host response in the cerebral parenchyma and meninges, for example, mast cells.49 

Analogous to peripheral nerve damage -  and contrary to what was long believed50 -  mast 

cell activation is the "first responder" in this injury.51 Although CNS microglia/macrophages 

and endothelial cells produce TNF-α in response to stimuli, mast cells are "primed" to initiate 

acute inflammation with their stores of preformed TNF-α.52 Treatment with mast cell-

stabilizing agents limits brain damage caused by perinatal hypoxia-ischemia and transient 

focal ischemia.51,53,54 Given their complement of vasoactive and matrix-degrading 

components like histamine, and proteases able to activate matrix metalloproteinases, mast 

cells are an early response element in the regulation of acute BBB changes after cerebral 

ischemia and hemorrhage.55 By regulating acute microvascular gelatinase activation, cerebral 

mast cells can effect BBB disruption following transient cerebral ischemia.56 

 

Chronic neurodegenerative diseases 

Microglia are activated in response to a number of different pathological states within the 

CNS including neurodegenerative disorders such as AD and Parkinson disease, MS, 

amytrophic lateral sclerosis (ALS), and AIDS dementia complex. There is a vast literature on 

this facet of neuroinflammation which is beyond the scope of this article. The reader is 

referred to several excellent recent reviews.57,58 In the case of Parkinson disease, the 

oxidative stress response by microglial cells, most notably the activity of the enzyme 

NADPH oxidase, appears to play a central role in the ensuing pathology.60  

The case for mast cells, while somewhat analogous, depends to a greater extent on the 

specific disease. In MS patients, especially in chronic active plaques, mast cells have been 

noted generally clustered around venules and capillaries.60 Mast cell-associated gene 

transcripts (e.g. tryptase) are also present in MS plaques, while mast cell mediators such as 
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tryptase and histamine have been found in cerebrospinal fluid of MS patients, with levels 

rising during relapses.61,62 In mouse experimental autoimmune encephalomyelitis (EAE) 

models of MS, however, there is no clear evidence whether mast cell effects on EAE 

development depend on mouse strain, immunization protocol, or type and severity of the 

disease.63 A role for mast cells in AD pathogenesis remains to be established, although one 

report claimed that fibrillar amyloid β-peptides trigger CD47-dependent mast cell secretory 

and phagocytic responses.64 For Parkinson disease, there is no clear evidence to support a 

relationship between brain mast cells and Parkinson disease. As concerns mast cells and 

motor neurone disease, this point will be discussed separately below.  

 

Mast cells and ALS: at the crossroads? 

ALS, also known as Charcot’s or Lou Gehrig’s disease, is the most prevalent type of 

motor neurone disease, affecting around 4-6 per 100,000. ALS is characterized by a 

progressive dysfunction and degeneration of both upper motor neurones comprising the 

corticospinal tract, and lower motor neurones arising from the brainstem nuclei and ventral 

roots of the spinal cord. Neuroinflammation is now established as an important aspect of 

pathology in ALS.65 There is a marked activation or proliferation of both microglia and 

astrocytes at specific disease stages in mouse models of ALS66 and in humans in vivo.67 There 

is also compelling evidence indicating impairment of all neurovascular unit components 

including the blood-brain and blood-spinal cord barriers in both patients and animal models 

of ALS.68 

As discussed earlier, mast cells participate in innate host defence reactions, and 

orchestrate neuroinflammatory processes. Meningeal mast cells contain preformed TNF-α 

(the only cell type to do so) and vasoactive mediators, which are able to regulate BBB69 and 

blood-spinal cord barrier70 function and facilitate the entry of lymphocytes, neutrophils and 
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mast cells themselves71 when the barrier is compromised as a result of CNS pathology, e.g. in 

ischemic stroke and ALS, respectively. Indeed, degranulating72 and IL-17-expressing mast 

cells70 have been observed in the spinal cord of ALS patients, and serum levels of this 

cytokine are reported to correlate with the duration and severity of the disease.70 An 

interaction between mast cells and T regulatory lymphocytes can lead to increased IL-6 

production by the former,73 in turn promoting the activity of Th17 lymphocytes.74 Moreover, 

IL-15 and IL-12 are elevated in the serum and cerebrospinal fluid of patients with ALS.75 IL-

15 is a mast cell chemoattractant76 (potentially contributing to mast cell recruitment in 

inflammatory responses), while mast cells are an important source of IL-12.77 Pathogen-

associated molecular patterns (PAMPs) are molecules associated with groups of pathogens 

that are recognized by cells of the innate immune system. One important class of PAMP 

receptors is transmembrane Toll-like receptors (TLRs). IL-12 up-regulates expression of mast 

cell TLR2/TLR478 and proteinase-activated receptor-2,79 emerging targets for 

neuroinflammation.80    

 

Functional TLR2 and TLR4 expressed by mast cells and microglia respond to molecules 

called damage associated molecular patterns, one being the high mobility group box 1 protein 

found elevated in spinal cord of ALS patients.81 Likewise, microglia-released IL-6 and CCL5 

could, conceivably affect surface TLR2 and TLR4 expression on mast cells,82 resulting in the 

up-regulation of numerous chemokines to induce a pro-inflammatory profile in microglia.83 

Given that ALS patients frequently experience neuropathic pain, and that a transgenic mouse 

ALS model develops peripheral nerve inflammation,84 one might ask whether or not mast 

cells play a role here, as well. 
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Microglia and mast cells: the other side of the coin 

Activated microglia elaborate a potentially lethal cocktail of compounds capable of 

damaging neurones, oligodendrocytes, or extracellular matrix molecules, and depletion or 

blockade of microglia and macrophages prevents disease progression.85  

Microglia/macrophages, however, may deliver trophic factors,86 and support myelin 

regeneration by phagocytic removal of obstructive myelin debris87 or through activation and 

recruitment of endogenous oligodendrocyte precursor cells to the lesion site.88  Microglia are 

found adjacent to amyloid deposits, and anti-inflammatory drugs that suppress the 

inflammatory response in microglia attenuate symptoms in a mouse model of AD.89  Yet, in 

one study reducing or ablating resident microglia failed to alter amyloid plaque load in 

transgenic AD mouse models.90  Further, deleting the microglial chemokine receptor CCR2 

(which mediates the accumulation of mononuclear phagocytes at sites of inflammation) 

accelerated early disease progression and impaired microglial accumulation in an AD mouse 

model.91  Microglia activation via TLR4 signalling appears able to reduce, to some extent, Aβ 

deposits and preserve cognitive functions from Aβ-mediated neurotoxicity.92  However, 

prolonged activation of microglia is likely to result in a pro-inflammatory state. This idea is 

borne out in a newly published study in which the authors used monophosphoryl lipid A 

(MPL), a lipopolysaccharide-derived TLR4 agonist that exhibits unique immunomodulatory 

properties at doses that are non-pyrogenic.93 Repeated, systemic injections of MPL, but not 

lipopolysaccharide, significantly improved AD-related pathology in a transgenic mouse 

model. MPL treatment led to a significant reduction in Aβ load in the brain of these mice, as 

well as enhanced cognitive function. MPL induced a potent phagocytic response by microglia 

while triggering only a moderate inflammatory reaction.117   

As discussed earlier, acute CNS injuries are marked by a prolonged inflammatory 

response involving microglial activation and infiltration of macrophages and neutrophils. 
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However, the fact that microglia accumulation at the lesion site and penumbra hints to a 

possible neuroprotective role. Indeed, genetic ablation of microglial cells results in a larger 

infarct after transient middle cerebral artery occlusion,94 while microglia injected into the 

circulation of Mongolian gerbils home to an ischemic hippocampal lesion (facilitated by 

ischemia-induced BBB compromise) and improve neurone survival.95  Further, microglia 

may protect hippocampal neurones from excitotoxicity.96  Resting (ramified) microglia 

respond to, and repair, subclinical abnormalities of the brain without a complete activation 

transformation ,48 and are probably also key players in developmental synaptic pruning 

(discussed in more detail elsewhere97). 

 

Potential beneficial actions of mast cells should not be overlooked. Mast cells of human 

origin express and store angiogenin (a member of the ribonuclease A superfamily) within 

their granules, which is released upon stimulation by FcεRI-mediated signals, TLR ligands 

and NGF.98 NGF stimulated human mast cells release greater amounts of angiogenin 

compared with FcεRI cross-linking. Human angiogenin is reported to be neuroprotective and 

to promote the survival and neuritogenesis of motor neurones,99 and recent studies 

associating angiogenin gene mutations with ALS100 suggest a possible disease link. Mast 

cells are a source of serotonin in the hippocampus, which can contribute to behavioural and 

physiological functions in the hippocampus.101 Outside the nervous system, mast cells may 

contribute to wound healing.102 

 

A mast cell – glia dialogue  

Given their frequent proximity at sites of neuroinflammation, and the potential for 

peripheral (e.g. spinal) inflammation to influence supraspinal behaviours, it is conceivable 

that lines of communication exist between these two cell types. There is imounting evidence 
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for this, which will be briefly summarised here (see ref. 97 for a more detailed discussion). 

There is growing interest in TLR signalling pathways in neurodegenerative disorders and 

neuropathic pain, and especially TLR-2 and TLR-4. Engagement of TLR2/TLR4 on mast 

cells leads to release cytokines which recruit immune cells to the sites of injury. Likewise, 

microglial recruitment depends on signalling pathways involving TLR2/TLR4. Mast cell 

activation will up-regulate chemokine expression, including CCL5/RANTES, which induces 

a pro-inflammatory profile in microglia. Microglia-released IL-6 and CCL5 could, in turn 

affect mast cell expression of TLR2/TLR4. ATP, released from damaged cells/tissues, is a 

potent stimulus for microglia in vitro. ATP may act as an autocrine/paracrine factor for mast 

cells, and ATP released from one mast cell (e.g. FcεR1 cross-linking, stress) can diffuse 

several hundreds of micrometres to elicit a rise in Ca2+ in neighbouring cells.103 ATP binding 

to P2 receptors may stimulate release of IL-33 from microglia pre-activated ('primed') with 

PAMPs via TLRs.104 IL-33 can induce mast cells to secrete IL-6, IL-13 and CCL2 - in turn 

modulating microglia activity. Other examples include mast cell tryptase cleavage/activation 

of proteinase-activated receptor 2 on microglia (resulting in P2X4 receptor up-regulation and 

brain-derived neurotrophic factor release),105 while microglia-derived IL-6 and TNF-α up-

regulate mast cell expression of  proteinase-activated receptor 2, resulting in mast cell 

activation and TNF-α release.106,107 Elements of the complement system are also potential 

participants in this communication network, as the receptor for the chemoattractant  C5a is 

markedly up-regulated on reactive astrocytes and microglia in inflamed CNS tissue,108 C5a 

peptide is released in neuroinflammation,109 and there is crosstalk between C5a and TLR4; 

mast cell C5a receptor is up-regulated upon activation, and C5a receptor is a strong mast cell 

chemoattractant signal towards C5a peptide. These last findings point to an additional 

element whereby microglia and mast cells may work in concert to promote 

neuroinflammation (Table 2). 
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Taping endogenous mechanisms as a therapeutic approach to neuroinflammation 

Targeting microglial and mast cell activation is emerging as promising avenue for 

neuropathic pain,129 as well as agents which inhibit neurotoxic glial cell activation.130 Given 

the dangers that neuroinflammation poses to the organism, it would not be surprising if 

Nature has endowed the body with the capacity for self-defence. Indeed, we now recognize 

the existence of molecules involved in endogenous protective mechanisms, which are 

activated following different types of tissue damage or stimulation of inflammatory responses 

and nociceptive fibres. For example, chronic inflammatory processes such as those sustaining 

neuropathic pain may be counteracted by a program of resolution that includes the production 

of lipid mediators able to switch off inflammation.131  Chronic inflammatory conditions may 

lower the levels or actions of these molecules;132 conceivably, administration of such lipid 

mediators might provide an avenue "to commandeer nature’s own anti-inflammatory 

mechanisms and induce a "dominant" program of resolution".133 One interesting class of 

such natural mediators comprises the N-acylethanolamines (NAEs), which are composed of a 

fatty acid and ethanolamine – the so-called fatty acid ethanolamines. Principal fatty acid 

ethanolamine family members include the endocannabinoid N-arachidonoylethanolamine 

(anandamide) and its congeners N-stearoylethanolamine, N-oleoylethanolamine and N-

palmitoylethanolamine (PEA, or palmitoylethanolamide).134 PEA and its congeners are 

formed from N-acylated phosphatidylethanolamine (NAPE) by several enzymatic 

pathways,135 the principal one involving a membrane-associated NAPE-phospholipase D 

which generates the respective NAE and phosphatidic acid (Fig. 2).136 This enzyme converts 

N-palmitoyl-phosphatidyl-ethanolamine into PEA. In the mammalian brain, NAEs are 

hydrolysed by: (i) fatty acid amide hydrolase (FAAH) in the endoplasmic reticulum, which 

breaks down NAEs into the corresponding fatty acid and ethanolamine;137 (ii) lysosomal 

NAE-hydrolysing acid amidase (NAAA) (Fig. 2).138  NAAA is found mainly in 
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macrophages, where it hydrolyses NAEs having less than 18 carbon atoms, i.e., PEA, but not 

N-oleoylethanolamine and N-stearoylethanolamine. In contrast, FAAH hydrolyses all three 

NAEs. 

Molecules like PEA may, conceivably, function to maintain cellular homeostasis when 

faced with external stressors provoking, for example, inflammation.139  In fact, PEA is 

produced/hydrolysed by microglia and mast cells,140,141 it down-modulates mast cell 

activation,142 and controls microglial cell behaviours.143,144 Tissue levels of PEA are elevated 

in brain areas involved in nociception and in spinal cord following neuropathic pain 

induction,145 as well as conditions associated with pain development143,146 and in the 

interstitium of the trapezius muscle of women with chronic widespread pain and chronic 

neck-shoulder pain.147 The above observations thus suggest that PEA maintains cellular 

homeostasis by acting as mediator of resolution of inflammatory processes (Table 3). A 

corollary to this idea is that pathological situations may arise in which endogenous PEA 

levels are inadequate to deal with the ensuing insult. In these cases, exogenous administration 

to effectively "top up" the body’s own supply may be a therapeutically viable approach. 

Indeed, a growing number of studies demonstrate the validity of such; these are briefly 

summarized in Table 4. A more detailed discussion is outside the scope of the review, and 

will be covered elsewhere (Skaper S.D., submitted). 

 

As NAAA preferentially hydrolyzes PEA, inhibition of its degradation represents a 

complementary therapeutic approach to treat inflammation. A number of selective NAAA 

inhibitors have been described to date;168-170 these dampen responses induced by 

inflammatory stimuli in vivo and in vitro, and elevate PEA levels in vitro as well.168 The most 

recently identified compound, 1-(2-biphenyl-4-yl)ethyl-carbonyl pyrrolidine, is a reversible 

and competitive NAAA inhibitor: it reduces mRNA expression levels of inducible nitric 
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oxide synthase and IL-6 and increases intracellular PEA levels in mouse macrophages upon 

lipopolysaccharide-induced inflammation.171 

The numerous preclinical studies have encouraged clinical trials of PEA, mainly in the 

area of chronic and neuropathic pain. PEA reportedly improved myelinated-fibre function in 

patients with chemotherapy-induced painful neuropathy,172 and reduced neuropathic pain in a 

patient with MS.173 A recently presented case series described the application and potential 

efficacy and safety of micronized and ultra-micronized PEA (formulations designed to 

improve bioavailability) in the treatment of various syndromes associated with chronic pain 

that is poorly responsive to standard therapies.174 Some 40 or so clinical trials have been 

conducted to date, with a patient base exceeding 2000.175 There has also been a case study 

reporting on the effects of ultramicronized PEA in sporadic ALS, in which treatment led to an 

improved clinical picture, as evidenced by electromyographic analysis and pulmonary 

function.176  A more detailed description of PEA clinical trials will be discussed elsewhere 

(Skaper S.D., submitted). Importantly, PEA has no adverse effects at pharmacologically 

relevant doses. 

 

What is the molecular basis underlying the effects of PEA? As suggested in a number of 

studies, PEA may be a ligand for peroxisome proliferator activated receptor (PPAR)α, one of 

a group of nuclear receptor proteins that function as transcription factors regulating the 

expression of genes. PPARα- and γ-isoforms in particular are associated with pro-

inflammatory events. PEA actions (anti-inflammatory,177 anti-nociceptive/anti-

neuropathic160,166,178 and neuroprotective155,159,179) were either absent in PPARα null mice or 

blocked by PPARα antagonists. An 'entourage effect' has also been hypothesized to explain 

the pharmacological actions of PEA, whereby PEA enhances the anti-inflammatory and anti-

nociceptive activity of other endogenous compounds by potentiating their affinity for a 
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receptor or by inhibiting their metabolic degradation.180 Anandamide is a candidate molecule, 

as it possesses anti-inflammatory and anti-nociceptive effects. Anandamide and its congeners 

like PEA have in common the transient receptor potential vanilloid type 1 (TRPV1) receptor. 

The TRPV1 receptor, a non-selective cation channel expressed in small diameter sensory 

neurones, is activated by noxious heat, low pH and capsaicin. Anandamide itself is a TRPV1 

receptor agonist, and PEA enhances anandamide stimulation of the human TRPV1 receptor181 

in a cannabinoid CB2 receptor antagonist-sensitive fashion (although PEA shows no 

appreciable affinity for either CB1 or CB2 receptors) - which could be interpreted as PEA 

acting indirectly by potentiating anandamide actions.162 Mast cells182 and microglia183 

reportedly express TRPV1 receptors.  

 

Concluding remarks 

Neuroinflammatory disorders are conditions where immune responses damage 

components of the nervous system (Karolinska Institute, 2013, www.ki.se). Inflammatory 

effectors derive from the innate and adaptive immune systems, as well as glia within the 

CNS. Microglia, in particular, act as sensors for disturbed brain tissue homeostasis and 

accumulate locally in response to neuronal cell injury or entry of foreign material in the 

brain.184 Few studies until now have been directed to resident brain cell types capable of 

mounting immediate host responses in the brain and meninges. Mast cells are effector cells of 

the innate immune system, and represent the "first responders" to injury rather than 

microglia.51 Mast degranulation/mediator release is very rapid, while longer lasting activation 

elaborates de novo formed mediators. Mast cell degranulation does not result in cell demise; 

rather, mast cells are stable, multiple-use cells capable of surviving and delivering several 

consecutive hits.185 
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Research to-date has largely focused on detrimental effects of neuroinflammation in 

association with psychiatric and neurodegenerative diseases, as well as neuropathic pain. Yet, 

we know little of glial and mast cell changes in human chronic pain - unequivocal 

demonstration that glial and mast cell activation occurs in hypersensitised patients remains an 

important gap. We lack also systematic studies which provide a correlation between the 

magnitude of glial and/or mast cell markers in cerebrospinal fluid or spinal tissue and the 

intensity of pain in patients. 

 

Today’s armamentarium to combat neuropathic pain (antidepressants, anticonvulsants, 

sodium channel blockers, glutamate receptor antagonists, opioids) treats the symptoms but 

not the underlying pathophysiology. Further, they provide at best transient relief in only a 

fraction of neuropathic pain patients and can produce serious CNS side effects. Agents like 

cromolyn, which stabilize mast cells, suppress development of hyperalgesia but do not affect 

microglia. Microglial inhibitors (e.g. minocycline) commonly utilized in pain models rely on 

their anti-inflammatory properties but may suffer from issues such as non-selectivity in 

targeting one cell population, as well as the risk of acute or cumulative toxicity. Incomplete 

understanding of mechanisms underlying the induction and maintenance of neuropathic pain 

has hindered more effective treatments, including elucidating the role of mast cells and how 

they might interact with microglia. 

 

Clearly, much remains to be learned about signalling mechanisms that regulate 

neuroinflammation. One may envision the CNS neurone being subjected to 'assault' by a 

microglia-astrocyte-mast cell network, as a result of inadequate regulation of these non-

neuronal cells because of excessive and/or persistent endogenous and/or endogenous stimuli, 

and/or an inadequate cellular inhibitory capacity (Fig. 4). Targeting endogenous regulators of 
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neuroinflammation may thus prove to be a viable strategy for affecting a diverse array of 

nervous system disorders. Within this context, the capacity of PEA to modulate the protective 

responses of animals during inflammation and pain led to the hypothesis that endogenous 

PEA may be a component of the complex homeostatic system controlling the basal threshold 

of both inflammation and pain. The production of PEA during inflammatory conditions 

supports this role, and emerging data that selective inhibition of PEA degradation is anti-

inflammatory provides more direct evidence for the involvement of PEA in the control of 

pain and inflammation. It also leads one to ponder if we are not missing important therapeutic 

avenues by studying glia and mast cells in isolation from each other. Future studies should 

investigate the role of mast cells in inflammatory diseases as a network, which requires a 

critical examination of specific tissue localization, function, and dynamic interaction with 

endogenous cells. 
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BOX 1 

 
Mast cell ID chart 

 
 
Origin and classification:  

• First described by Paul Ehrlich in 1878 on the basis of their unique staining characteristics 
and large cytoplasmic granules 

• Very close to basophil granulocytes in blood; current evidence suggests that mast cells are 
generated by different precursor cells in the bone marrow 

• Thought to originate from bone marrow precursors expressing CD34; a distinct subset of mast 
cells can also be induced upon host responses to inflammation 

• The hematopoietic lineage development of tissue mast cells is unique compared to other 
myeloid-derived cells because it is early lineage progenitors, undetectable by histochemistry, 
that leave the bone marrow to enter the circulation. These immature lineage mast cells 
immediately undergo transendothelial recruitment into peripheral tissues wherein the 
appearance of secretory granules with a particular protease phenotype is regulated by the 
peripheral tissue. 

• Two types of mast cells are recognised, those from connective tissue and a distinct set of 
mucosal mast cells. The activities of the latter are dependent on T-cells 

• Present in most tissues in the vicinity of blood vessels, and are especially prominent near the 
boundaries between the body’s external environment and the internal milieu, such as the skin, 
mucosa of the lungs and digestive tract, as well as in the mouth, conjunctiva and nose 

• Mast cells are also found within the nervous system, including meninges, brain parenchyma 
and nerve 

 
Physiology: 

• Play a key role in the inflammatory process 
• Upon activation rapidly release granules into the interstitium 
• Degranulation is caused by direct injury (e.g. physical or chemical), cross-linking of IgE 

receptors or by activated complement proteins 
• Capable of elaborating a vast array of important cytokines and other inflammatory mediators 
• Express multiple "pattern recognition receptors" thought to be involved in recognizing broad 

classes of pathogens 
• Granules carry a variety of bioactive chemicals, proteoglycans, serine proteases, 

neuropeptides; can be transferred to adjacent cells of the immune system and neurones via 
transgranulation and their pseudopodia 

 
 
Role in disease: 

• Allergic reactions 
• Anaphylactic shock 
• Neuropathic pain 
• Acute and chronic neurodegenerative disorders 
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Table 1. Mast cell mediators 

 

• Biogenic amines  

  - biogenic amines (histamine (2-5 pg/cell), serotonin) 

 

• Cytokines 

- interleukins 1-6 

- leukemia inhibitory factor 

- tumour necrosis factor-α 

- interferon-γ 

- transforming growth factor-β 

- granulocyte-microphage colony-stimulating factor 

 

• Enzymes 

  - acid hydrolases 

  - chymase 

- phospholipases 

- rat mast-cell protease I and II 

- trypase 

 

• Lipid metabolites 

  - prostaglandin D2 

- leukotriene C4 

- platelet-activating factor 

 

 

• Other bioactive molecules 

  - neuropeptides (e.g. vasoactive intestinal peptide, substance P) 

- proteoglycans, mainly heparin (active as an anticoagulant) 

- nerve growth factor 

- ATP 

- nitric oxide 
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Table 2. Potential avenues of mast cell – glia communication  

 
 Biological actions  
Effector Microglia/Astrocytes Mast cells Ref. 
TLR2, TLR4 Microglial release of IL-6 and 

CCL5 affects surface expression 
of TLR2/TLR4 on mast cells 

Up-regulation of 
cytokine/chemokine release; 
CCL5/RANTES induces pro-
inflammatory profile in 
microglia; 
recruitment of immune cells 
to site of injury 

110-117 

ATP/P2 receptors ATP stimulates IL-33 release 
from microglia pre-activated with 
PAMPs via TLRs   

IL-33 binds to its receptor on 
mast cells and induces 
secretion of IL-6, IL-13 and 
monocyte chemoattractant 
protein 1 which, in turn could 
modulate microglia activity 

104,118,119

Proteinase-
activated receptor 
2 (PAR2) 

Mast cell tryptase 
cleaves/activates PAR2 on 
microglia, resulting in P2X4 up-
regulation and BDNF release 

IL-6 and TNF-α from 
microglia can up-regulate 
mast cell expression of  
PAR2, which can result in 
mast cell activation and TNF-
α release 

106,107, 
119,120 

CXCR4/CXCL12 Promotes microglia migration and 
activation; CXCR4/CXCL12 are 
both up-regulated in 
hypoxia/ischemia 

CXCR4 acts as mast cell 
chemotaxin 

121-124 

C5a receptor 
(C5aR) 

C5aR up-regulated upon 
microglia activation; C5a peptide 
released in neuroinflammtion; 
crosstalk between C5a and TLR4 

C5aR up-regulated upon 
activation; a strong mast cell 
chemoattractant signal 
towards C5a peptide; 
crosstalk between C5a and 
TLR4 

108,125,126

CD40/CD40L Astrocytes display enhanced 
expression of CD40 - cross-talk 
with CD40L leads to production 
of inflammatory cytokines; 
astrocyte-derived 
cytokines/chemokines trigger 
mast cell degranulation 

Display enhanced surface 
expression of CD40L 
respectively - cross-talk with 
CD40 leads to production of 
inflammatory cytokines 

127,128 

 
BDNF, brain-derived neurotrophic factor; IL, interleukin; PAMPs, pathogen-associate 
molecular patterns; PAR, proteinase-activated receptor; TLR, Toll-like receptor; TNF-α, 
tumour necrosis factor-α 
 

[Modified from The FASEB Journal, 26(8), S.D. Skaper, P. Giusti, L. Facci, Microglia and 

mast cells: two tracks on the road to neuroinflammation, 3103-3117 (Table 1), Copyright 
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(2012), with permission from the Federation of American Societies for Experimental 

Biology]. 

 

 

Table 3. Changes in palmitoylethanolamide levels during neuroinflammation 

 

Disease; tissue or body fluid Change Main finding Ref.

Chronic relapsing experimental 

allergic encephalomyelitis; spinal 

cord 

↑ ~2-fold increase 148

Experimental acute stroke; striatal 

and cortical infarcted hemisphere 
↑ ~ 25-fold increase compared to 

controlateral (non-infarcted) areas 

149 

Experimental focal cerebral 

ischemia; ischemic cerebral cortex 
↑ 25-fold increase compared with 

sham-operated animals, at 24 hrs 

post-focal cerebral ischemia 

143 

Cerebral ischemia in man; penumbral 

tissue surrounding the primary 

ischemic lesion  (microdialysis 

study) 

↑ Significantly increased levels 

within the first day after ischemia 

150 

Chronic migraine or probable chronic 

migraine and probable analgesic-

overuse headache; cerebrospinal 

fluid 

↑ Significantly higher levels in the 

two patient groups (without 

significant difference between them) 

compared to control subjects 

151

Chronic widespread pain and chronic 

neck-shoulder pain in women; 

microdialysis dialysate of the 

trapezius 

↑ Significantly higher levels 

compared to healthy subjects, and 

correlation with pain intensity 

147 
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Table 4. Preclinical studies showing anti-neuroinflammatory and/or neuroprotective 

effects of palmitoylethanolamide 

 

Model Action Ref. 

Compression model of spinal cord 

trauma in mice 

Reduces spinal inflammation/tissue injury, 
ameliorates recovery of motor limb function 
 

Limits mast cell infiltration and activation; 
reduces activation of microglia and astrocytes 

152,153 

Traumatic brain injury in mice Reduces edema and infarct size 
 

Improves neurobehavioural functions

154 

MPTP mouse model of Parkinson 

disease 

Protects against MPTP-induced neurotoxicity, 

microglial and astrocyte activation, and 

functional deficits

155 

Stroke (middle cerebral artery 

occlusion in rats) 

Reduces edema and infarct size 
 

Improves neurobehavioural functions

156 

β-Amyloid peptide injection in rat 

brain 

Counteracts reactive gliosis 
 

Reduces behaviour impairments

157 

Chronic constriction injury in 

sciatic nerve 

Anti-allodynic and anti-hyperalgesic  effects 
 

Reduces mast cell activation 
 

Preservation of nerve structural integrity 

158-160 

Acute inflammation (formalin, 

dextran, carrageenan injection in 

rat hindpaw)  

Reduces mast cell activation, tissue edema, 

inflammatory/mechanical hyperalgesia 

161-166 

WAG/Rij rat model of absence 
epilepsy 

Anti-epileptic action 167 

 

MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 

 

Figure Legends 

Fig. 1. Electron microscopic image of an isolated tissue mast cell. Note the prominent 

appearance of numerous cytoplasmic granules. 

 

Fig. 2. Palmitoylethanolamide synthesis and catabolism. A plasma membrane-associated N-

acylated phosphatidylethanolamine-phospholipase D (PLD) converts N-palmitoyl-
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phosphatidyl-ethanolamine (N-APE) into palmitoylethanolamide and phosphatidic acid. 

Palmitoylethanolamide is metabolized to palmitic acid and ethanolamine by both fatty acid 

amide hydrolase (FAAH, which also breaks down other fatty acid amides) and the more 

selective N-acyl ethanolamine-hydrolyzing acid amidase (NAAA). Tissue levels of 

palmitoylethanolamide increase in stressful settings such as peripheral tissue inflammation, 

neuroinflammation, and pain. See text for further details. 

 

Fig. 3. Palmitoylethanolamide (PEA) treatment reduces activation of astrocytes induced by 1-

methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection. Western blot analysis showed 

a significant expression of glial fibrillary acidic protein (GFAP) in the substantia nigra. PEA 

treatment significantly reduced the activation of astrocytes after MPTP injection. The relative 

expression of the protein band (~47 kDa) was standardized for densitometric analysis to β-

actin levels, and reported as mean ± s.e.m. from n=5/6 brains for each group. ***p<0.001 

versus sham, ###p<0.001 versus MPTP + vehicle. [Modified from PLoS One 7(8):e41880. 

doi: 10.1371/journal.pone.0041880), E. Esposito, D. Impellizzeri, E. Mazzon, I. Paterniti, S. 

Cuzzocrea, Neuroprotective activities of palmitoylethanolamide in an animal model of 

Parkinson's disease. (Figure 10). (Ref. 155) © Esposito et al. This is an open-access article 

distributed under the terms of the Creative Commons Attribution License]. 

 

Fig. 4. Neuroinflammation may result from CNS neurones being impinged upon by a 

microglia-astrocyte-mast cell network, as a result of inadequate regulation of these non-

neuronal cells due to excessive and/or persistent endogenous and/or endogenous stimuli, 

and/or an inadequate cellular inhibitory capacity. Bidirectional communication may take 

place between microglia, mast cells and astrocytes, which can act to reinforce the deleterious 

signals acting on the neuron. 
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