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Introduction
Myofascial pain syndrome (MPS) is a myalgic condition
characterized by local and referred pain that originates in a
myofascial trigger point (TrP) [1••]. The term myofascial
TrP was coined to describe a zone of intense pain in a hard-
ened muscle band that refers (triggers) pain distantly when
stimulated. The active TrP has two clinical attributes that
must be explained for there to be a more complete under-
standing of the nature of myofascial pain. One attribute is
a motor dysfunction of the muscle that is characterized by
a constant, discrete hardness within the muscle. It usually
is palpable as a taut band or nodularity within the belly of
the muscle. The other attribute is a sensory abnormality
that is characterized primarily by pain. Pain can be local to
the site of the taut band and distant from it or referred to
another part of the body. The taut band is a constant
feature of an active TrP and can be present in the absence
of pain. It appears to be the primary abnormality that
develops in response to stressors that activate TrP
formation. Ischemia may be an important factor in the
development of the taut band, if not a dominant factor.
The taut band and pain are dynamic features of the muscle
TrP. They vary in their presence and activity from being
spontaneously painful to being quiescent and painful only
when stimulated mechanically or metabolically. The taut
band itself has unique characteristics not found in normal
muscle. It is persistently hard, is considered to be a
contracted band of muscle, and has the additional prop-
erty of contracting sharply when mechanically stimulated
by plucking it manually or by putting a needle into it. The
mechanism that underlies development of the taut band is

unknown, but altered activity of the motor endplate, or
neuromuscular junction, is most likely. Increased concen-
tration of acetylcholine (ACh) in the synaptic cleft, changes
in ACh receptor (AChR) activity in a number of receptors,
and changes in acetylcholinesterase (AChE) activity are
consistent with known mechanisms of endplate function
and could explain the increase in endplate electrical
activity that is seen in the active myofascial TrP.

Local myofascial pain occurs because of the release of
substances from damaged muscle, such as adenosine
triphosphate (ATP) [2], bradykinin (BK), 5-hydrox-
ytryptamin (5-HT, serotonin), prostaglandins, and potas-
sium (K+), and from the extracellular fluid around the TrP,
such as protons (H+), from the acidic milieu, which occurs
in ischemia and in exercise. These substances activate
muscle nociceptors. They also induce the release of
calcitonin gene-related peptide (CGRP) from the motor
nerve terminal and from the muscle nociceptors, which in
turn increases motor endplate activity.

This article presents known data about the TrP and
discusses in detail salient features of muscle contraction,
motor endplate function, and some of the biochemical
features of receptor function as they relate to the TrP. This
information is synthesized into an expansion of the inte-
grated hypothesis of the TrP that has been put forth by
Simons et al. [1••]. A primary focus of this discussion is
the formation and maintenance of the taut band, an early
and essential development in the formation of active TrPs.

Features of Myofascial Trigger Points 
and Muscle Nociceptors
Certain features of the myofascial TrP relevant to the
problem of how the taut band develops and is maintained
are well established. Likewise, certain pathophysiologic
changes in exercised muscle are known that are relevant to
the development of muscle pain and MPS. The neurophys-
iology of sympathetic nerve function and of nociceptive
sensory receptor activation and modulation are relevant to
an understanding of the TrP. These points are summarized
in the next section.

A taut muscle band may contain a latent TrP, without
tenderness. However, in MPS, tenderness is always associ-
ated with the taut band. Treatment of the tender taut band
by injection of local anesthetic, dry needling without anes-
thetic, or manual compression and stretching of the tender

Simons’ integrated hypothesis proposed a model of trigger 
point (TrP) activation to explain known TrP phenomena, 
particularly endplate noise. We propose an expansion of 
this hypothesis to account for new experimental data and 
established muscle pathophysiology.
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area in the taut band without use of any anesthetic results
in softening of the taut band and an increase in the
pressure pain threshold not seen in control, non-tender
muscles (Gerwin, unpublished data).

A marked increase in the frequency of low-voltage (50–
100 microvolts) electrical activity is found at the point of
maximum tenderness in the taut band in the human [3•]. It
has been convincingly localized to the neuromuscular junc-
tion endplate zone of the taut band, where it appears as an
abnormally increased frequency of miniature endplate
potentials, in the rabbit model [4,5] and in humans [6•].

Areas of intense focal sarcomere contraction have been
described in the muscles of animals with naturally occur-
ring TrPs [7] and in animals in which AChE activity has
been pharmacologically blocked or inhibited [8–10]. In
the three studies in which AChE was blocked or inhibited,
the supercontraction of sarcomeres occurred at the neuro-
muscular junction. Sarcomere contraction also was noted
in two human studies, one a biopsy study and the other on
fresh cadavers [11,12].

There are a number of biochemical alterations identi-
fied by microdialysis sampling techniques at the active TrP
site [13•]. Among the changes found are elevated CGRP
levels and acidic pH when compared with inactive (asymp-
tomatic) TrPs and normal control subjects.

Exercise under ischemic conditions [14] and eccentric
muscle exercise result in muscle pain. Delayed-onset muscle
soreness occurs after ischemic exercise [15] and after eccen-
tric exercise. Muscle that is maximally eccentrically con-
tracted shows evidence of muscle fiber destruction similar to
changes seen in exercised ischemic muscle [16,17•,18].
Unaccustomed eccentric exercise (forced lengthening of a
contracting muscle) causes immediate damage to the muscle
and delayed muscle soreness in the ensuing days. Muscle
soreness is the result of local muscle damage, inflammatory
changes, and nociceptor sensitization [19,20••]. Metabolic
disorders that impair energy production in muscle are associ-
ated with exercise-induced muscle pain. Maximal concentric
exercise also compresses capillaries and can produce muscle
ischemia and injury. Sustained contraction of muscle,
commonly seen in postural work-related MPS, is thought to
have a similar effect on muscle and blood flow.

Tendon organs (sensory receptors located at the
muscle-tendon junction in skeletal muscle) are responsive
to active tension generated by contractions of groups of
motor units [21]. They are particularly sensitive to active
muscle force, but also respond to muscle stretch.

Intramuscular hypoperfusion is likely to occur in myal-
gic syndromes such as myofascial pain [22,23,24••].

Hypoxia (extremely low PO2 ) is associated with the
TrP [25]. This is compatible with the concept of circulatory
hypoperfusion of TrP-containing muscles because
ischemia produces hypoxia.

Individuals with work-related trapezius myalgia have a
deficit of cytochrome C oxidase [26,27], which is sugges-
tive of an energy crisis within the muscle, perhaps associ-

ated with mitochondrial dysfunction. This correlates with
reports of low levels of ATP and adenosine diphosphate in
patients with trapezius myalgia. A high degree of mito-
chondrial disorganization also was seen in the muscles of
these patients. Moreover, there was a decrease in the num-
ber of capillaries per fiber area in these subjects. These data
support the concept of an ischemia-induced energy crisis
in the development of exercise-induced muscle pain.

α-Adrenergic agonists that inhibit sympathetic nerve
activation reduce abnormal miniature endplate activity by
approximately 60% [28•].

Muscle nociceptors are dynamic structures whose recep-
tors can undergo conformational change depending on local
tissue environment. Furthermore, individual muscle nocice-
ptors possess vanilloid (sensitive to heat, H+), purinergic
receptors (sensitive to ATP, adenosine diphosphate, and
adenosine) and acid-sensing ion channels (ASIC) [20••].
Therefore, the same nociceptor is capable of transmitting
pain during inflammation through the vanilloid receptor
and ASIC and pain caused by muscle trauma or other cases of
muscle necrosis through the purinergic receptor.

The nociceptor terminal contains stored substances,
(eg, substance P [SP] and CGRP). Although these sub-
stances are produced in the dorsal root ganglion, 90% of
the SP and CGRP is transported antidromically down the
axon into the nociceptor terminal from where they are ton-
ically released. However, a noxious stimulus sufficient to
cause nociceptor activation causes bursts of SP and CGRP
to be released into the muscle. They have a profound effect
on the local biochemical milieu and microcirculation by
stimulating “feed-forward” neurogenic inflammation
(a continuous cycle of increasing production of inflamma-
tory mediators and neuropeptides and increasing barrage
of nociceptive input into wide dynamic-range neurons in
the spinal cord dorsal horn).

Implications
Taken together, these points suggest that a possible activat-
ing event in MPS is exercise under conditions that limit the
availability of an energy supply, possibly by the develop-
ment of high pressures within the contracting muscles that
result in vascular constriction or closure and the sub-
sequent development of muscular ischemia and cell dam-
age. Damaged muscle releases inflammatory mediators
that activate muscle nociceptors to increase the release of
neuropeptides locally and in the dorsal horn. A critical
review of the relation of hypoperfusion to chronic muscle
pain recently has been published [24••], accompanied by
two very cogent commentaries [29,30] in which the pros
and cons of such a theory are argued. There certainly is
confounding and conflicting data on this topic. Neverthe-
less, there are some attractive features of this hypothesis as
it relates to the development of the taut band.

The increase in CGRP that occurs in ischemia-induced
muscle injury could result in an apparent increase in AChR
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activity and an inhibition of AChE activity, resulting in the
development of the taut bands seen in MPS. The mecha-
nism whereby the sympathetic nervous system modulates
endplate noise has been unexplained previously. Adrener-
gic activity can alter the release of ACh from the motor
nerve terminal. It also can produce vasoconstriction
through desensitization and down-regulation of β2-
adrenoreceptors or an up-regulation of α2-adrenoreceptors
[24••]. Superimposed on other factors that predispose to
focal hypoperfusion, it can turn a marginal state of
ischemia into a pathologic state.

The work of Shah et al. [13•] sheds light on the nature
of the active TrP and on the development of the taut band
and muscle tenderness. Preliminary results of studies on
the local biochemical milieu of the TrP using microdialysis
sampling techniques show that at the active TrP, the pH is
lowered and that SP, CGRP, BK, norepinephrine, 5-HT,
tumor necrosis factor-1α,  and interleukin 1 are signifi-
cantly higher compared with latent TrPs and with normal
control subjects [13•]. The role that some of these factors
play in the activation of the taut band and in the initiation
and perpetuation of muscle pain is discussed in this paper.

Muscle Injury Related to Eccentric 
Muscle Contraction and Maximal 
Concentric Muscle Contraction
Unaccustomed or intense exercise-induced weakness and
muscle damage is well documented, particularly for eccentric
exercise [31]. Eccentric muscle contraction is muscle contrac-
tion of a lengthening muscle. Examples that illustrate length-
ening contractions are laying a heavy object on a table while
extending the contracting biceps muscle as the arm extends
at the elbow. Another is that of a water skier rising out of the
water while skiing, lengthening the contracting hamstrings as
the knees and hips both extend. A final example is walking or
running downhill, an action that is accomplished with
lengthening contractions of the quadriceps.

Eccentric exercise is associated with muscle soreness
and muscle damage. Immediate injurious effects occur
with as little as one unaccustomed eccentric contraction in
unconditioned muscle, resulting in delayed onset muscle
soreness. This produces pain with stretching or muscle
contraction or with muscle palpation. Eccentric exercise
causes an irregular and uneven lengthening of muscle fiber
and overextension of some sarcomeres to a point beyond
filament overlap. Lengthening of muscle to this point is
beyond the optimum length/tension ratio, which is a
region of sarcomere length instability. Recovery of muscle
contractibility is impaired in the range beyond the opti-
mum length/tension ratio. Therefore, optimum length for
active tension of a contracting muscle unit is an important
factor in determining whether there will be tissue damage.
A muscle unit that has an optimum length less than the
whole muscle optimum length is more likely to be dam-
aged [32] because it will reach a point of instability before

the whole muscle does. Different muscle fiber length-
tension relationships throughout the muscle are consid-
ered to be a reason that muscle fiber injury with eccentric
exercise is uneven [21] and nonhomogeneous within the
muscle. This may be clinically important because the taut
band in muscle is not uniformly distributed throughout
the muscle, perhaps reflecting the heterogeneous distribu-
tion of muscle injury.

Muscle fiber injury occurs rapidly in eccentric muscle
contraction. Desmin is a muscle cytoskeletal protein that
transmits force from myofibrillar force generators (actin
and myosin) to the muscle surface and to the muscle-
tendon junction. It is lost soon after eccentric muscle con-
traction and is one of the earliest signs of muscle damage.
Loss of the desmin protein results in significant disorgani-
zation of the myofibrillar lattice [33]. A significant loss of
desmin staining was seen 5 minutes after initiation of
eccentric exercise [34]. Loss of desmin staining occurred in
the absence of contractile or metabolic protein disruption,
thereby indicating that it is one of the first signs of injury in
eccentric contraction. A single bout of eccentric exercise in
rats resulted in early loss of desmin, inflammatory cell
infiltration, and transient increase in membrane perme-
ability, but ultimately to an increase in desmin content per
sarcomere [35]. Segmental disruption of muscle occurs
with a loss of cellular integrity and an increase in fiber size
caused by the segmental hypercontraction of muscle fiber
that is associated with very short sarcomere lengths [36].
These authors concluded that after eccentric muscle con-
traction, the muscle fiber cytoskeleton is disrupted, Z-band
streaming occurs, and the A-band is disorganized. Muscle
cell integrity is lost, there are hypercontracted regions of
muscle, and inflammatory cellular invasion of the muscle
fiber occurs. That desmin protein is lost in eccentric con-
tractions has been disputed. A study of human subjects
performing eccentric exercises did not show loss of desmin
[37]. It is proposed that the absence of staining for titin,
actin, and nebulin not associated with Z-band streaming,
but seen in regions of increased numbers of sarcomeres,
represents adaptation of unaccustomed exercise by new
sarcomere formation in humans [38,39]. It is unknown if
there is a species difference in response to eccentric exercise
or if there is another explanation for these results. None-
theless, pressure pain thresholds decreased in human sub-
jects performing slow eccentric exercise and a ropy band
was felt at the site of pain [40], indicating that eccentric
exercise in humans results in nociceptor sensitization and
taut band formation.

The regions of sarcomere disruption are thought to act
as foci for further damage with repeated, unaccustomed
eccentric exercise [21]. Repeated eccentric contractions lead
to sarcomere breakdown and muscle fiber damage
[17•,19,41]. Maximal concentric and eccentric exercise
damage sarcoplasmic and endoplasmic reticulum in skele-
tal muscle. Muscle protein oxidation is produced in every
form of exhaustive exercise, including eccentric exercise
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[42]. Increased muscle fiber tension or contraction tension
develops after injury to even a few muscle fibers. The
increase in passive tension of the muscle is associated with
an increase in sarcoplasmic Ca++, causing a sensation of
muscle stiffness. Causes of muscle injury with eccentric
exercise are thought to include free radical cellular injury
from the increased production of reactive oxygen species
that induces neutrophil and macrophage migration, infil-
tration, and cytokine activation [43,44]. Increase in free
radical production is associated with lipid peroxidation
that further contributes to muscle fiber injury [45].

One result of muscle damage is an immediate reduc-
tion of muscle force-generating capacity [31]. The clinical
manifestation of this is weakness. The TrP is associated
with weakness, but there must be a reversible motor inhib-
itory component to the weakness, perhaps central at the
spinal cord level, because there is an almost instantaneous
restoration of strength when the TrP is inactivated. This
clinical observation contrasts with the structural changes
associated with myofibril cellular damage, changes that
would not reverse quickly.

Calcitonin Gene-related Peptide, 
Acetylcholine Receptors, 
and Acetylcholinesterase
Calcitonin gene-related peptide
Calcitonin gene-related peptide coexists with ACh at the
synaptic endings of the motor nerve and acts as a facilitator
of ACh release from the motor nerve fiber terminal. It is
released by electrical stimulation of the nerve ending or by
the accumulation of ACh that may be induced by inhibi-
tion of AChE. CGRP is a 37 amino-acid peptide that has
multiple known activities. It is a vasodilator, augments
autonomic functions, affects immunologic function, and
modulates neurotransmission at central and peripheral
synapses. It is present in two forms: CGRP 1 and 2. The two
forms differ by only a few amino acids and are encoded by
different genes that are separately regulated. The metabo-
lism of AChR molecules and of AChE molecular forms are
partly controlled by the activation of CGRP-1 binding sites.
High-affinity CGRP-1 binding sites in the adult rat gracilis
muscle are restricted to the motor endplate regions [46••].

Calcitonin gene-related peptide receptors consist of
protein complexes that span the membrane and are associ-
ated with accessory proteins that include a receptor
activity-modifying protein and a receptor component pro-
tein that couples the receptor to the cellular signal trans-
duction pathway. The pharmacology of CGRP receptor
subtypes is strongly dependent on these accessory proteins.
CGRP 1 is made in the anterior horn motor neuron cell
body and then moved by axoplasmic flow to the nerve ter-
minal. CGRP-1 activity is up-regulated by axotomy or neu-
ronal blockade. CGRP 1 also enhances AChR-α subunit
mRNA in skeletal muscle, increases AChR phosphorylation
(the rate of AChR desensitization), and prolongs the mean

open time of AChR channels [45]. These functions indicate
that CGRP 1 functions to control the synthesis of AChR
and activity at the motor endplate. CGRP also controls
AChE activity at the neuromuscular junction [47]. CGRP 1
down-regulates all of the AChE molecular forms at the
motor endplate. This activity is mediated by specific CGRP-
1 receptors [47].

Calcitonin gene-related peptide increases the contrac-
tile force of nerve-induced muscle contraction gland,
increases cyclic adenosine monophosphate, which regu-
lates AChR phosphorylation and desensitization in a rat
model and leads to the accumulation of AChRs on chick
embryo myotubes [48]. CGRP up-regulates AChR concen-
tration on the postsynaptic membrane and potentiates the
AChR-operated slow Ca++ signal by activation of the pro-
tein kinase-A system [49]. CGRP has an innervation-like
effect on AChE at the motor endplate. CGRP down-regu-
lates AChE, while ACh has the effect of up-regulating AChE
activity. AChE production is increased by denervation and
by exercise and is decreased by CGRP [48]. The increase in
intracellular cyclic adenosine monophosphate also has the
effect of down-regulating AChE expression at the transcrip-
tional level, thereby locally inhibiting AChE activity [50].
Thus, CGRP increases the motor endplate receptor sites
that serve as docking sites for ACh, increasing the activity
of the ACh molecules that are in the synaptic cleft fluid at
the postsynaptic membrane.

Calcitonin gene-related peptide increases or decreases
ACh release from motor nerve terminals as a species-
specific action. Moreover, its action on the same tissue has
been reported to be directly opposite. In one study of rat
diaphragm, CGRP enhanced ACh release accompanied by
an increase in the frequency of miniature endplate poten-
tials [51]. On the other hand, another study reported that
CGRP reduced the release of ACh from rat diaphragm [52],
although the reverse has been found in mouse diaphragm.
The effect of CGRP in some species may be to first depress
nerve-evoked ACh release to prevent excessive action of
ACh at the neuromuscular synapse; however, subsequently
it may enhance muscle contraction [52]. In general, CGRP
enhances spontaneous release of ACh from the motor
nerve terminal and it binds to high affinity receptors other
than the AChR on the postsynaptic membrane near the
motor endplate. It also increases the levels of surface AChR
on the muscle.

Acetylcholine receptors
The AChR is a transmembrane complex that has an outer
ligand-binding configuration, an intramembrane compo-
nent with different voltage-gated ion channels, and an
inner cytoplasmic tail. Therefore, along with motor end-
plate activity, it is dynamic rather than static. Activation of
the motor endplate gives rise to miniature endplate activity
or depolarization of the muscle fiber membrane. Miniature
endplate activity depends on the state of the AChR and on
the local concentration of ACh that is the result of ACh
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release, reuptake, and breakdown by AChE. Likewise, depo-
larization of the postsynaptic membrane and muscle con-
traction is a result of the interplay between ACh release, the
number of available binding sites (AChR concentration),
and AChE activity, as well as a number of factors that affect
binding and dissociation, such as the affinity of ACh for
the receptor and gating kinetics at the AChR [53]. AChR
activity is affected by changes in conformation and in the
up- and down-regulation of receptor concentration at the
motor endplate. Factors affecting receptor activity include
physical factors such as temperature and changes in local
pH, which can be caused by ischemia, responses to endo-
genous substances such as peptides released into the local
environment, and changes induced pharmacologically.

When the AChR is activated, ionic channel currents are
generated that result in miniature endplate potentials or
muscle fiber depolarization. Miniature endplate currents
depend on the rate constants of ACh binding to AChR. Bind-
ing constants related to the affinity of ACh for the receptor
are different when AChE is active and when it is inhibited.

Acetylcholine release
Acetylcholine release is quantal and nonquantal. Quantal
release is calcium-dependent whereas nonquantal release
is calcium-independent. ACh release is partly spontaneous
and triggered by motor nerve activation. It also is increased
as a result of AChE inhibition that causes accumulation of
ACh in the synaptic cleft and stimulates motor nerve end-
ings [54]. Therefore, altered AChE activity is a potential
source of endplate activity modulation.

Muscle contraction takes place through depolarization
of the muscle fiber membrane at the motor endplate.
Quantal ACh, which is ACh in a presynaptic terminal vesi-
cle, is released from the synaptic terminal of the motor
nerve and then is taken up by ACh nicotinic receptors in
the postsynaptic membrane of the muscle. The quantal
release of ACh from synaptic vesicles can result in minia-
ture endplate potentials that are associated with changes in
ionic channel currents. Nonquantal release of ACh is leak-
age of individual molecules of ACh from the motor nerve
presynaptic terminal and is not nerve-excitation induced.
Spontaneous release of ACh is more nonquantal than
quantal. The critical factor in the exocytotic synchronized
quantal release of ACh from the motor nerve terminal is
the influx of calcium across the membrane [55], mediated
by P-type calcium channels.

Acetylcholine also acts through a feedback mechanism
to regulate its own release at the neuromuscular junction
in the rat [56]. ATP is co-released with ACh during quantal
exocytosis and undergoes hydrolysis to adenosine [55].
Evoked quantal ACh release is modulated further by ade-
nosine and by ATP, leading to inhibition and facilitation of
ACh release in different species. Nonquantal release of
ACh can trigger subthreshold miniature endplate poten-
tials without depolarizing the membrane that results in
muscle cell contraction. Many different mechanisms exist

that modulate the quantal release of ACh from the presyn-
aptic nerve terminal and influence the frequency of ACh-
induced miniature endplate noise.

Presynaptic sympathetic nerve modulation 
of acetylcholine release
The sympathetic nervous system modulated the observed
endplate noise at the TrP, reducing it by approximately
60% in the study by Chen et al. [28•]. Alpha-and β-adreno-
receptors on the motor nerve terminal mediate facilitation
at motor endplates, enhancing stimulated ACh release
from the rodent phrenic nerve [56]. This action provides
one mechanism for the observed increase in endplate
noise with sympathetic activation and the reduction in
endplate noise when sympathetic activity is blocked.

Acetylcholinesterase
Acetylcholinesterase is present in the synaptic cleft. It breaks
down ACh and thereby can inhibit or terminate ACh action
at the postsynaptic neuromuscular junction. It acts to
decrease the available ACh and to inhibit miniature endplate
potential activity and motor endplate-induced muscle cell
membrane depolarization. AChE activity is pH-dependent. It
is inhibited by acidic pH. Therefore, it is inhibited by muscle
ischemia and by exercise that is sufficient to lower pH into
the acidic range. Furthermore, CGRP down-regulates and
thereby effectively inhibits the activity of AChE. CGRP release
is augmented by low pH. Thus, the acidic pH found at the
active TrP site by Shah et al. [13•] favors increased ACh activ-
ity through decreasing the action of AChE, but also decreases
the removal of ACh from its postsynaptic receptor.

Acidic pH and Muscle Pain
The work of Sluka et al. [57••] elegantly demonstrates that
acidic pH has a profound effect on the initiation and per-
petuation of muscle pain. Repeated acid injections into rat
muscle produces a bilateral, long-lasting, mechanical
hyperalgesia that is maintained without continued muscle
nociceptive input and does not produce damage to muscle
tissue. This model also demonstrated that secondary
mechanical hyperalgesia is maintained by neuroplastic
changes in the central nervous system, even after the cessa-
tion of nociceptive activity. The initiation of hyperalgesia
occurs in response to repeated intramuscular injection of
pH-4 saline, suggesting that initiation involves activation
of ASICs or the capsaicin-sensitive TRPV1 channel in mus-
cle. As stated by Sluka et al. [58], a more acidic milieu may
activate ASIC1 or ASIC3 muscle nociceptors, which in turn
could produce mechanical hyperalgesia. Mechanical
hyperalgesia is characteristic of the myofascial TrP (Fig. 1).

Hypothesis
It can be hypothesized that the activating event in the devel-
opment of the TrP is the performance of unaccustomed
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eccentric exercise, eccentric exercise in unconditioned mus-
cle, or maximal or submaximal concentric exercise that leads
to muscle fiber damage and to segmental hypercontraction
within the muscle fiber. Adding to the physical stress of such
exercise is hypoperfusion of the muscle caused by capillary
constriction, which results from muscle contraction. Capil-
lary constriction is increased by sympathetic nervous system
adrenergic activity. The resultant ischemia and hypoxia adds
to the development of tissue injury and produces a local
acidic pH with an excess of protons. Acidic pH results in inhi-
bition of acetylcholinesterase activity, increased release of
CGRP, and activation of ASIC on muscle nociceptors. Acidic

pH alone (in the absence of muscle damage) is sufficient to
cause widespread changes in the pain matrix. However, the
breakdown of muscle fibers results in the release of several
proinflammatory mediators such as SP, CGRP, K+, 5-HT,
cytokines, and BK that profoundly alter the activity of the
motor endplate and activity/sensitivity of muscle nociceptors
and wide dynamic-range neurons. Motor endplate activity is
increased because of an apparent increase in the activity of
ACh. This apparent increase in effectiveness is caused by sev-
eral factors that include an increase in the release of ACh that
is mediated by CGRP, presynaptic motor terminal adrenergic
receptor activity, and by AChE inhibition caused by CGRP

Figure 1. A schematic outline of the expanded trigger point hypothesis. The activating event is muscle activity that stresses muscle beyond 
its tolerance and leads to muscle injury and capillary constriction. Muscle injury results in the release of substances that activate muscle 
nociceptors and cause pain. Capillary constriction occurs as a result of muscle contraction and sympathetic nervous system activation. 
Ischemia results from hypoperfusion, which is caused by capillary constriction. The pH becomes acidic, inhibiting AChE activity. CGRP 
is released from the motor terminal and from injured muscle. CGRP inhibits AChE, facilitates ACh release, and up-regulates AChRs. 
The end result is increased ACh activity with increased frequency of MEPPs, sarcomere hypercontraction, and the formation of taut bands. 
The highlighted boxes indicate those events that have been identified or are supported by microdialysis studies of the trigger point. 
Ach—acetylcholine, AChE—acetylcholinesterase, AChR—acetylcholine receptors, ATP—adenosine triphosphate, CGRP—calcitonin 
gene-related peptide, H+—protons, K+—potassium, MEPP—miniature endplate potentials, SP—substance P. Adapted from Shah et al. [13•].
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and acidic pH. AChRs are up-regulated through the action of
CGRP, creating more docking sites for ACh, thereby increas-
ing the efficiency of binding to the receptor. The taut band
results from the increase in ACh activity. Miniature endplate
potential frequency is increased as a result of greater ACh
effect. Release of BK, K+, H+, and cytokines from injured
muscle activates the muscle nociceptor receptors, thereby
causing tenderness and pain. The presence of CGRP drives
the system to become chronic, potentiating the motor end-
plate response and potentiating, with SP, activation of mus-
cle nociceptors. The combination of acidic pH and
proinflammatory mediators at the active TrP contributes to
segmental spread of nociceptive input into the dorsal horn of
the spinal cord and leads to the activation of multiple recep-
tive fields. Neuroplastic changes in dorsal horn neurons
occur in response to continuous nociceptive barrage, causing
further activation of neighboring and regional dorsal horn
neurons that now have lower thresholds. This results in the
observed phenomena of hypersensitivity, allodynia, and
referred pain that is characteristic of the active myofascial TrP.

Conclusions
There normally is an equilibrium between the release of
ACh, the breakdown of ACh, and its removal from AChRs in
the postsynaptic membrane by AChE that is disturbed with
muscle injury. In injured muscle, there is release of sub-
stances that activate muscle nociceptors and cause pain and
there is facilitation of ACh release, inhibition of ACh break-
down and removal from the AChR, and an up-regulation of
AChRs. This leads to the development of persistent muscle
fiber contraction, as is characteristic of the myofascial TrP.
This hypothesis supports and expands on the main theses of
Simons’ pioneering Integrated Trigger Point Hypothesis and
points to further areas of needed investigation.
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